当前位置:主页 > 信息公开 > 人事任免
谷歌AI平台被爆漏洞背后:关于AI安全我们的“傻
发布日期:2018-01-03 16:17 浏览次数:

原标题:谷歌AI平台被爆漏洞背后:关于AI安全我们的“傻与天真”

当我们一直在讨论AI能给互联网安全带来什么影响的时候,可能一直都忽略了一个问题:AI本身也不安全。

这两天的新闻恰如其分地提醒了我们这一点。近日,谷歌被爆其机器学习框架TensorFlow中存在的严重安全风险,可被黑客用来制造安全威胁,谷歌方面已经确认了该漏洞并做出了整改回应。

虽然是提前发现,这些漏洞本身没有带来实质威胁。但这条消息还是让我们看到了某种蠢蠢欲动的不安。TensorFlow、Torch、Caffe这些机器学习开发框架,差不多是如今AI开发者与研究者的标准配置,但这些平台最近却纷纷被爆出存在安全漏洞和被黑客利用的可能性。

某种意义上来说,这些消息在提醒我们同一个问题:当我们急切的将资金与用户关系聚集在机器学习周围时,也可能是将巨大的危险捆绑在了身上。

更重要的是,面临AI安全问题,我们中的大部分人还处在很傻很天真的“懵懂状态”,对它的逻辑和危害性近乎一无所知。

本文希望来科普一下这些内容,毕竟防患于未然,等到真正出现大事件再惊叹也就晚了。另外必须提醒开发者和企业的是,在谷歌这些大公司不遗余力的推广自家机器学习平台,并且为了吸引使用者而快速迭代、大量发布免费资源时,开发者本身一定要留个心眼,不能不假思索的使用。

比起心血毁于一旦,更多的审查机制和更严密的安全服务是非常值得的。

盲点中的魔鬼:机器学习框架的安全隐患

说机器学习平台的漏洞,有可能让开发者心血付诸东流绝不是开玩笑。在今年上半年的勒索病毒事件里,我们已经见识过了如今的黑客攻击有多恐怖。而勒索病毒本身就是利用了微软系统中的漏洞,进行针对式攻击锁死终端。

可以说,在勒索病毒的洗礼之后,信息产业已经进入了“漏洞霸权时代”。只要拥有了更多漏洞,就拥有了大范围的控制权与支配权。随着黑客攻击的工具化和门槛降低,能力一般的攻击者也可以利用平台漏洞发动广泛攻击。

但在我们愈发重视“漏洞产业”带给今天世界的安全隐患时,却不自主的产生了一个视线盲区。那就是人工智能。

这里普及一下今天大部分AI开发任务的基本流程:一般来说,一个开发者想要从头开始开发深度学习应用或者系统,是一件极其麻烦,几乎不可能的事。所以开发者会选择利用主流的开发框架。比如这次被爆出隐患的谷歌TensorFlow。

利用这类平台,开发者可以用平台提供的AI能力,结合开源的算法与模型,训练自己的AI应用。这样速度快效率高,也可以吸收最先进的技术能力。这种“不能让造车者从开发轮子做起”的逻辑当然是对的,但问题也随之到来了:假如轮子里面有问题呢?

由于大量开发者集中利用机器学习框架训练AI是近两年的事情,此前也没有爆出过类似平台存在安全问题,所以这个领域的安全因素一直没有被重视过,可能大部分AI开发者从来都没有想过会存在安全问题。

但这次被发现的漏洞却表明:利用TensorFlow本身的系统漏洞,黑客可以很容易的制造恶意模型,从而控制、篡改使用恶意文件的AI应用。

由于一个投入使用的深度学习应用往往需要复杂的训练过程,所以恶意模型的攻击点很难短时间被察觉。但由于智能体内部的逻辑关联性,一个点被黑客攻击很可能将会全盘受控。这种情况下造成的安全隐患,显然比互联网时代的黑客攻击更加严重。

理解了这些,我们可能会达成一个并不美好的共识:我们一直在担心的AI失控,可能根本不是因为AI太聪明想夺权,而是居心不良的黑客发动的。

AI“失控”:一个今天不得不面对的问题

相比于经典计算的信息存储与交互模式,人工智能,尤其是机器学习类任务,最大的改变之一就是展现出了信息处理的整体性和聚合性。比如著名AlphaGo,它不是对每种棋路给出固定的应对模式,而是对棋局进行预判和自我推理。它的智慧不是若干信息组成的集合,而是一个完整的“能力”。

这是AI的优点,但很可能也是AI的弱点。试想,假如AlphaGo中的某个训练模型被黑客攻击了,让系统在该打吃的时候偏偏就不。那么最终展现出的将不是某个棋招运算失当,而是干脆一盘棋也赢不了。

说白了,AI注定是一个牵一发动全身的东西,所以平台漏洞带来的安全风险才格外可怕。